Mst1-FoxO Signaling Protects Naïve T Lymphocytes from Cellular Oxidative Stress in Mice

نویسندگان

  • Juhyun Choi
  • Sangphil Oh
  • Dongjun Lee
  • Hyun Jung Oh
  • Jik Young Park
  • Sean Bong Lee
  • Dae-Sik Lim
چکیده

BACKGROUND The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. However, its functions in mammals are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS Here, we report that the Mst1-FoxO signaling pathway plays a crucial role in survival, but not apoptosis, of naïve T cells. In Mst1(-/-) mice, peripheral T cells showed impaired FoxO1/3 activation and decreased FoxO protein levels. Consistently, the FoxO targets, Sod2 and catalase, were significantly down-regulated in Mst1(-/-) T cells, thereby resulting in elevated levels of intracellular reactive oxygen species (ROS) and induction of apoptosis. Expression of constitutively active FoxO3a restored Mst1(-/-) T cell survival. Crossing Mst1 transgenic mice (Mst1 Tg) with Mst1(-/-) mice reduced ROS levels and restored normal numbers of peripheral naïve T cells in Mst1 Tg;Mst1(-/-) progeny. Interestingly, peripheral T cells from Mst1(-/-) mice were hypersensitive to gamma-irradiation and paraquat-induced oxidative stresses, whereas those from Mst1 Tg mice were resistant. CONCLUSIONS/SIGNIFICANCE These data support the hypothesis that tolerance to increased levels of intracellular ROS provided by the Mst1-FoxOs signaling pathway is crucial for the maintenance of naïve T cell homeostasis in the periphery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conserved MST-FOXO Signaling Pathway Mediates Oxidative-Stress Responses and Extends Life Span

Oxidative stress influences cell survival and homeostasis, but the mechanisms underlying the biological effects of oxidative stress remain to be elucidated. Here, we demonstrate that the protein kinase MST1 mediates oxidative-stress-induced cell death in primary mammalian neurons by directly activating the FOXO transcription factors. MST1 phosphorylates FOXO proteins at a conserved site within ...

متن کامل

The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death.

Oxidative stress influences cell survival and homeostasis, but the mechanisms underlying the biological effects of oxidative stress remain to be elucidated. The protein kinase MST1 (mammalian Ste20-like kinase 1) plays a major role in oxidative stress-induced cell death in primary mammalian neurons. However, the mechanisms that regulate MST1 in oxidative stress responses remain largely unknown....

متن کامل

CTLA-4–Ig Activates Forkhead Transcription Factors and Protects Dendritic Cells from Oxidative Stress in Nonobese Diabetic Mice

Prediabetes and diabetes in nonobese diabetic (NOD) mice have been targeted by a variety of immunotherapies, including the use of a soluble form of cytotoxic T lymphocyte antigen 4 (CTLA-4) and interferon (IFN)-gamma. The cytokine, however, fails to activate tolerogenic properties in dendritic cells (DCs) from highly susceptible female mice early in prediabetes. The defect is characterized by i...

متن کامل

Regulation of neuronal cell death by MST1-FOXO1 signaling.

The protein kinase mammalian Sterile 20-like kinase 1 (MST1) plays a critical role in the regulation of cell death. Recent studies suggest that MST1 mediates oxidative stress-induced neuronal cell death by phosphorylating the transcription factor FOXO3 at serine 207, a site that is conserved in other FOXO family members. Here, we show that MST1-induced phosphorylation of FOXO1 at serine 212, co...

متن کامل

Dynamic FoxO transcription factors.

Forkhead box O (FoxO) transcription factors FoxO1, FoxO3a, FoxO4 and FoxO6, the mammalian orthologs of Caenorhabditis elegans DAF-16, are emerging as an important family of proteins that modulate the expression of genes involved in apoptosis, the cell cycle, DNA damage repair, oxidative stress, cell differentiation, glucose metabolism and other cellular functions. FoxO proteins are regulated by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009